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Abstract

In this paper two enhanced plate theories for laminated and sandwich plates are developed via the mixed variational

formulation for free vibration studies. A concept presented by the author [J.-S. Kim, Reconstruction of first-order shear

deformation theory for laminated and sandwich shells, AIAA Journal 42 (2004) 1685–1697], which includes the

displacement and stress recovery procedure, is extended to the mixed variational theorem. By obtaining the transverse

shear stresses based on higher-order zig-zag theories, the mixed variational formulation embraces them as the classical

FSDT and HSDT. Relationships between the higher-order zig-zag theories and the classical FSDT and HSDT are

systematically established via the mixed variational theorem and the generalized definition of the mean displacement. The

accuracy and efficiency of the present enhanced plate theories are demonstrated by comparing their results with the

reported results in the literature and 3D exact elasticity solutions for the plates vibrating in cylindrical bending.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite materials provide excellent opportunities for light weight and high stiffness
structures as well as elastic couplings for potential optimization of design criteria. Many models acco-
unting for the transverse shear deformation in composite and sandwich plates have appeared in the
literature, since the transverse shear stiffness of these materials is very low as compared to their in-plane
rigidity. It is a challenging problem to understand the dynamical behavior of laminated and sandwich
plates with sufficient accuracy, especially for composite sandwich structures due to the strong shearing of a
foam core.

Since the first-order shear deformation theory (FSDT) was proposed by Reissner [1,2] and Mindlin [3],
several studies using FSDT have been conducted for the free vibration analysis of composite plates [4–7]. In
the vibration analysis of isotropic moderately thick plates, the FSDT will usually suffice. It is, however,
inadequate to model the dynamical behavior of highly orthotropic, composite or sandwich plates using the
FSDT, unless appropriate shear correction factors (SCFs) are provided [8]. Thus many plate theories have
been developed to overcome the deficiency of FSDT.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Smeared displacement-based higher-order shear deformation theories were developed first [9–15]. The
assumed displacement of these higher-order theories is expressed as a polynomial form of the thickness
coordinate. These theories do not account for continuity of the transverse shear stresses and cannot accurately
describe the through-the-thickness variation of stresses. A better description can be obtained by layerwise
theories [16–18] that are known to be fairly accurate since they allow a kink in the slope of deflection at each
interface between layers. These layerwise theories, however, have the drawback of requiring many degrees of
freedom depending upon the number of layers. Higher-order zig-zag theories, which are constructed by
superimposing a linear zig-zag displacement proposed by Yu [19] and DiSciuva [20] on overall cubic varying
fields, have been paid attentions because of their accuracy and efficiency in the ply-level analysis [21–24]. They
satisfy not only the traction free conditions at the top and bottom surface but also the continuity conditions at
the interface. Assessments of zig-zag theories for composite plates and shells can be found in the recent review
paper by Carrera [25], where the original contributions of Lekhnitskii and Ambartsumian to zig-zag theories
are discussed in detail.

There have been several efforts to keep the same computational cost as the FSDT in predicting the
structural behavior of laminated composites. One of them is to find the appropriate SCFs for laminated
composites [26,27]. As is well known, the global response by the FSDT with an appropriate SCFs is fairly
good, even for thick laminated composites. Burton and Noor [28] proposed a predictor–corrector method for
laminated and sandwich shells. The displacement fields have been calculated by integrating the equilibrium
equation, in which the SCFs are obtained by an iterative manner in predictor phase, through the thickness in
corrector phase. A post-process method has been developed by Cho and Kim [29]. An efficient higher-order
plate theory (EHOPT) developed by Cho and Parmerter [21,22] is utilized as a post-processor. They found the
relationship between the FSDT with SCFs and the EHOPT under the assumption of the transverse shear
energy equivalence. This method has been extended to general lamination configurations [30], various post-
processors [31] and the finite element method [32,33]. Accuracy of both predictor–corrector and post-process
methods strongly depends on the SCFs.

On the other hand, several FSDT type plate theories have been developed by improving the transverse shear
strains. Qi and Knight [34,35] have developed a refined FSDT for laminated plates. They introduced the
effective shear stress and strain so that the actual shear stress and strain are expressed in terms of the averaged
shear strain of the original FSDT. An accurate asymptotically correct shear deformation theory, which is
based on the variational-asymptotic method originally proposed by Berdichevsky [36], was proposed
by Sutyrin [37]. As he pointed out, however, the variational-asymptotic technique leads to a theory with
higher derivatives, which is asymptotically correct but not useful because of its being overly complex. Yu et al.
[38] have, recently, developed a nonlinear ‘‘Reissner-Like’’ plate theory based on the variational-asymptotic
method. They have developed the computer program based on this, called variational asymptotic plate
and shell theory (VAPAS) [39], by incorporating the one-dimensional (1-D) through-the-thickness
finite element analysis to overcome the analytical complexity of variational-asymptotic procedure. Recently,
Yu [40] extended this theory to allow maximum freedom for the asymptotically correct energy transformation.
An enhanced first-order shear deformation theory (EFSDT) has been developed by the author and his co-
worker [41], which is based on the definition of Reissner–Mindlin’s plate theory. It was assumed that the
displacement and in-plain strain fields of the FSDT can approximate those of three-dimensional (3D) theory
in the averaged least square sense. This theory has also been improved by minimizing the truncated strain
energy [42,43].

In this paper, a concept presented by the author [42], which includes the displacement and stress recovery
procedure, is extended to the mixed variational theorem [2,44]. There are a couple of papers dealing with such
a mixed variational approach. Murakami [45] used such a approach by introducing a function of the thickness
coordinate to emulate the zig-zag effect [46,47]. This was extended to the dynamic analysis of plates and shells
by Carrera that included the effect of transverse normal stress [48]. Generalized mixed-based plate theories
have been developed by Messina [49] and Messina and Soldatos [50], where the importance of completely
fulfilling the transverse shear stress continuity was well discussed. Tarn and Wang [51] developed a refined
asymptotic theory in the frame work of the Hellinger–Reissner variational functional, in which the
displacements and transverse stresses were taken to be the functions subject to variation. The present work is
mainly inspired by Tarn and Wang’s work [51] and the author’s previous work [41–43].
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In this context, the present work includes the following aspects:
(1)
 The mixed variational formulation [51] is adopted with the assumption of a negligible transverse normal
stress.
(2)
 Transverse shear stresses used in the mixed formulation are derived from higher-order zig-zag theories
based on Refs. [21,22].
(3)
 Displacement fields of the classical FSDT [1,3] and higher-order shear deformation theory (HSDT) [13,15]
are used to derive the EFSDT and enhanced HSDT (EHSDT) that preserve the computational advantage
of the classical FSDT and HSDT, respectively.
(4)
 Displacement fields of higher-order zig-zag theories are recovered via the generalized definition of the
mean displacement that was established in Ref. [42].
(5)
 The effectiveness of the present models is demonstrated by comparing their results, such as frequencies and
through-the-thickness mode shapes, with the 3D exact elasticity solutions and the data available in
literature.
2. Mixed formulation

A laminated plate of thickness h made of a monoclinic material is considered. Geometry and coordinates of
a laminated plate is shown in Fig. 1. Unless it is not differently specified, Greek indices will take values in the
set 1, 2, whereas Latin indices will take values in 1, 2, 3. The reference two-dimensional (2D) plane is
represented by xa and the through-the-thickness position is denoted by x3, where x3 2 ½�h=2;þh=2�.

The 3D constitutive equation is given by

sij ¼ Cijkl
1
2
ðuk;l þ ul;kÞ, (1)

where sij and ui represent the stress tensor and displacements, respectively. Cijkl denote the components of
elasticity tensor with monoclinic symmetry properties. Subscripts ð Þ;i denote partial derivatives with respect to
xi coordinates.

The Hellinger–Reissner functional [51] for the problem is expressed as

PR ¼

Z þh=2

�h=2

Z
O

1

2
sijðuk;l þ ul;kÞ �W cðsijÞ

� �
dOdx3 �

Z
Ss

~Tiui dSs �

Z
Su

Tiðui � ~uiÞdSu, (2)

where O represents the reference plane, Ss denotes the boundary with prescribed tractions ~Ti, and Su denotes
the boundary with prescribed displacements ~ui. W cðsijÞ is the complementary energy density function such
that �ij ¼ qW c=qsij, which can be expressed as

�ab ¼ qW c=qsab ¼ 1
2
ðua;b þ ub;aÞ, (3)
Fig. 1. Geometry and coordinates of laminated plates.
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�a3 ¼ qW c=qsa3 ¼ 1
2
C�1a3b3sb3 �

1
2
g�a3, (4)

�33 ¼ qW c=qs33 ¼
1

C3333
s33 � C33ab

1

2
ðua;b þ ub;aÞ

� �
� ��33, (5)

where superscripts ð Þ� are taken to distinguish the transverse strains based on the displacements. The in-plane
stresses sab can be expressed by

sab ¼ Cabgo
1
2
ðug;o þ uo;gÞ þ Cab33u3;3. (6)

The strains and in-plane stresses are expressed in terms of ui and si3 [51], so that the displacements ui and
transverse stresses si3 are taken to be the functions subject to variations. Substituting Eqs. (3)–(6) into Eq. (2)
and taking the first variation yields

dPR ¼

Z þh=2

�h=2

Z
O
½sabd�ab þ sa3dga3 þ s33d�33 þ ðga3 � g�a3Þdsa3 þ ð�33 � �

�
33Þds33�dOdx3

�

Z
Ss

~Tidui dSs �

Z
Su

dTiðui � ~uiÞdSu, ð7Þ

in which �ij represents the strain tensor based on the displacements ui, while g�a3 and �
�
33 come from the assumed

transverse stresses.
Under the assumption of the negligible transverse normal stress, s33 � 0, Eq. (5) yields

��33 ¼ �C33ab=C3333
1
2
ðua;b þ ub;aÞ (8)

and from the 3D constitutive equation of Eq. (1), u3;3 is obtained by

u3;3 ¼ �
�
33, (9)

which implies that ð�33 � ��33Þ ¼ 0 in Eq. (7).
Plugging Eq. (9) into Eq. (6) yields the 2D in-plane constitutive equations as

sab � Qabgo
1
2
ðug;o þ uo;gÞ � s2D

ab , (10)

where

Qabgo ¼ Cabgo �
Cab33Cgo33

C3333
. (11)

With the aid of Eqs. (9) and (10), Eq. (7) can be rewritten as, without the prescribed tractions:

dPRjs33¼0 ¼ dP2D
R �

Z
O
dbP2D

R dO, (12)

in which

dbP2D
R ¼ hs

2D
ab d�ab þ sa3dga3 þ ðga3 � g�a3Þdsa3i, (13)

where h�i ¼
Rþh=2
�h=2 ð�Þdx3, and the displacement boundary conditions are

ui ¼ ~ui on Su. (14)

The preceding 3D displacement boundary conditions are not easy to exactly satisfy on the boundary, since
they involve the boundary layer effect. This is beyond the scope of the present study.

For elastodynamic problems of the plate, the variational principle can be expressed asZ t2

t1

ðdT � dP2D
R Þdt ¼ 0, (15)

where

dT ¼

Z
O
d bT dO; d bT ¼ hr _uid _uii. (16)
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3. Transverse shear stresses based on higher-order zig-zag theories

In the previous section, two independent fields are assumed for both displacements ui and transverse shear
stresses sa3. In this section, the transverse shear stresses are derived based on higher-order zig-zag theories.
The displacement fields, which are well-known FSDT [1,3] and HSDT [13,15], will be discussed in later.

The displacement fields for the perfectly bonded layers can be determined by the requirements, such that the
transverse shear stresses should vanish on the upper and lower surface of the plates and should be continuous
through the thickness. These conditions can be satisfied by superimposing a linear zig-zag displacement, with a
different slope in each layer, on overall cubic or higher varying fields.

One can start with the displacement field that includes a quintic varying displacement and a linear zig-zag
displacement:

uaðxi; tÞ ¼ uo
aðxa; tÞ þ caðxa; tÞx3 þ xaðxa; tÞx

2
3 þ faðxa; tÞx

3
3þzaðxa; tÞx

4
3 þ Zaðxa; tÞx

5
3

þ
XN�1
k¼1

SðkÞa ðxa; tÞðx3 � x3ðkÞÞHðx3 � x3ðkÞÞ , ð17Þ

u3ðxi; tÞ ¼ uo
3ðxa; tÞ , (18)

where the superscript, ð Þ�, represents the variable on the reference plate, N is the number of layers, and
Hðx3 � x3ðkÞÞ is the Heaviside unit step function. The underline terms will be used for EFSDT, whereas the
whole expression will be used for EHSDT.

Traction shear-free boundary conditions for the upper and lower surfaces of the plates requires that s	a3 ¼ 0;
where ð Þþ ¼ ð Þjx3¼þh=2; ð Þ

�
¼ ð Þjx3¼�h=2. For monoclinic layers, the transverse shear stresses depend only on

the transverse shear strains. Thus the traction-free conditions can be written as

gþa3 ¼ ca þ uo
3;a þ xahþ

3h2

4
fa þ

h3

2
za þ

5h4

16
Za þ

XN�1
k¼1

SðkÞa ¼ 0, (19)

g�a3 ¼ ca þ uo
3;a � xahþ

3h2

4
fa �

h3

2
za þ

5h4

16
Za ¼ 0, (20)

which are satisfied by

ca þ uo
3;a ¼ �

3h2

4
fa �

5h4

16
Za �

1

2

XN�1
k¼1

SðkÞa , (21)

xa ¼ �
h2

2
za �

1

2h

XN�1
k¼1

SðkÞa . (22)

The transverse shear strains are then given by

ga3 ¼ 3 x2
3 �

h2

4

� �
fa þ 4x3 x2

3 �
h2

4

� �
za þ 5 x4

3 �
h4

16

� �
Za þ

XN�1
k¼1

SðkÞa �
1

2
�

x3

h
þHðx3 � x3ðkÞÞ

� �
, (23)

where SðkÞa represents the change in slope at each interface and depends on the transverse shear material
properties. This can be calculated by applying the continuity conditions of transverse shear stresses.

sðkÞa3 jx3¼x3ðkÞ
¼ sðkþ1Þa3 jx3¼x3ðkÞ

ðk ¼ 1; 2; . . . ;N � 1Þ. (24)

From the preceding equations, one can obtain 2ðN � 1Þ linear algebraic equations of 2ðN � 1Þ unknowns SðkÞa .
By solving this, SðkÞa is obtained by

SðkÞa ¼ a
ðkÞ
ab fb þ b

ðkÞ
ab zb þ c

ðkÞ
ab Zb, (25)
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where the terms a
ðkÞ
ab , b

ðkÞ
ab , and c

ðkÞ
ab are functions of the material properties only, and their derivations are given

in Appendix A.
The transverse shear strains are then obtained by substituting Eq. (25) into Eq. (23). These can be

expressed by

ga3 ¼AabfbþBabzb þ CabZb � g�a3, (26)

in which the underline term, which is the transverse shear strain of a third-order zig-zag plate theory, can be
derived by applying the traction free conditions at top and bottom surfaces and continuity conditions to the
underline term presented in Eq. (17), and

Aab ¼ 3 x2
3 �

h2

4

� �
dab þ

XN�1
k¼1

a
ðkÞ
ab �

1

2
�

x3

h
þHðx3 � x3ðkÞÞ

� �
, (27)

Bab ¼ 4x3 x2
3 �

h2

4

� �
dab þ

XN�1
k¼1

b
ðkÞ
ab �

1

2
�

x3

h
þHðx3 � x3ðkÞÞ

� �
, (28)

Cab ¼ 5 x4
3 �

h4

16

� �
dab þ

XN�1
k¼1

c
ðkÞ
ab �

1

2
�

x3

h
þHðx3 � x3ðkÞÞ

� �
, (29)

where dab is the Kronecker delta function.
Thus the transverse shear stresses can be written as follows:

sa3 ¼ Ca3b3ðAbgfgþBbgzg þ CbgZgÞ, (30)

where all terms are used to obtain the present EHSDT, while the underline term is used for EFSDT.
4. Enhanced plate theories

In this section, two enhanced plate theories, EFSDT and EHSDT, are derived via the mixed variational
formulation. The displacement field, which is the classical HSDT, is assumed in the form

ūa ¼ ūo
a þ yax3þūh

ax
2
3 þ yh

ax3
3; ū3 ¼ ūo

3 , (31)

where the displacements of FSDT and HSDT are denoted by overbar ūi to distinguish them from those given
in Eqs. (17) and (18), and the underline terms represent the FSDT [1,3]. Notice that the mid-plane
displacement ūo

a indicates the mean displacement of the plate in the FSDT, while it does not in the HSDT,
which will be shown later.

Now we have two required fields, the transverse shear stresses and displacements. Substituting Eqs. (26)
and (31) into Eq. (13) yields

dbP2D
R ¼ Nabdūo

a;b þMabdya;bþNh
abdūh

a;b þMh
abdy

h
a;b þQadðya þ ūo

3;aÞ þQð1Þa dð2ūh
aÞ þQð2Þa dð3yh

aÞ (32)

and

hðga3 � Sa3b3sb3Þdsa3i ¼ 0, (33)

where

Nab

Mab

Nh
ab

Mh
ab

8>>>><
>>>>:

9>>>>=
>>>>;
¼

Aabgo Babgo Dabgo Habgo

Babgo Dabgo Habgo Ah
abgo

Dabgo Habgo Ah
abgo Bh

abgo

Habgo Ah
abgo Bh

abgo Dh
abgo

2
666664

3
777775

�̄o
go

kgo
�h
go

kh
go

8>>>><
>>>>:

9>>>>=
>>>>;

(34)
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and

Qa

Qð1Þa

Qð2Þa

8><
>:

9>=
>; ¼

bAð0Þa3b3 bBð0Þa3b3 bDð0Þa3b3bAð1Þa3b3 bBð1Þa3b3 bDð1Þa3b3bAð2Þa3b3 bBð2Þa3b3 bDð2Þa3b3

2
6664

3
7775

fb

zb
Zb

8><
>:

9>=
>;. (35)

From Eq. (33), one can find that the transverse shear stresses variables can be expressed in terms of the
displacement variables as follows:

fb

zb
Zb

8><
>:

9>=
>; ¼

eAb3g3 eBb3g3 eEb3g3eBb3g3 eDb3g3 eFb3g3eEb3g3 eFb3g3
eAh
b3g3

2
664

3
775
�1 bAð0Þg3l3 bBð0Þg3l3 bDð0Þg3l3bAð1Þg3l3 bBð1Þg3l3 bDð1Þg3l3bAð2Þg3l3 bBð2Þg3l3 bDð2Þg3l3

2
6664

3
7775
T

ḡl3
2ūh

l

3yh
l

8><
>:

9>=
>;, (36)

where ḡl3 � yl þ ūo
3;l.

Substituting Eq. (36) into Eq. (35) yields

Qa

Qð1Þa

Qð2Þa

8><
>:

9>=
>; ¼

bAa3b3 bBa3b3 bEa3b3bBa3b3 bDa3b3 bFa3b3bEa3b3 bF a3b3 bAh
a3b3

2
664

3
775

ḡb3
2ūh

b

3yh
b

8>><
>>:

9>>=
>>;, (37)

where the stiffness bAa3b3 for EFSDT can be calculated by

bAa3b3 ¼ bAð0Þa3l3 eA�1l3g3
bAð0Þg3b3. (38)

The stress resultants and stiffness matrices presented in Eqs. (34)–(36) are given in Appendix B.

4.1. Enhanced first-order shear deformation theory

Applying the variational principle of Eq. (15) according to Eqs. (31), (32), (34) and (37), the governing
equations off the present EFSDT are given by

dūo
a : Nab;b ¼ €NI

a,

dya : Mab;b �Qa ¼
€MI
a,

dūo
3 : Qa;a ¼

€VI
3, ð39Þ

where

€NI
a
€MI
a
€V I
3

8><
>:

9>=
>; ¼

I ð0Þ I ð1Þ 0

I ð1Þ I ð2Þ 0

0 0 I ð0Þ

2
64

3
75

€̄u
o

a

€ya
€̄u

o

3

8>><
>>:

9>>=
>>;; I ðjÞ ¼ hrx

j
3i ðj ¼ 0; 1; 2Þ (40)

and associated boundary conditions are:

dūo
a ¼ 0 or Nabnb ¼ 0,

dya ¼ 0 or Mabnb ¼ 0,

dūo
3 ¼ 0 or Qana ¼ 0, ð41Þ

where na is the direction cosine to be projected on xa axis.
Notice that the preceding equations present the governing equations of classical FSDT except the transverse

shear force Qa shown in Eq. (39).
It is important to accurately predict the through-the-thickness displacements that are the mode shapes in the

case of elastodynamic problems. Higher-order zig-zag theories presented in the previous section can be used as
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the post-processor to improve the prediction. This can be achieved by writing the displacement fields of
higher-order zig-zag theories in terms of those of enhanced plate theories.

From the underline term presented in Eq. (26), one can obtain the following expression:

ua;3 þ uo
3;a ¼Aabfb, (42)

which yields the following displacements of a third-order zig-zag plate theory for an EFSDT by integrating
through the thickness:

ua ¼ uo
a � uo

3;ax3 þ Fabfb; u3 ¼ uo
3, (43)

where

Fab ¼

Z
Aab dx3

¼ x3 x2
3 �

3h2

4

� �
dab þ

XN�1
k¼1

a
ðkÞ
ab �

x3

h
�

x2
3

2h
þ ðx3 � x3ðkÞÞHðx3 � x3ðkÞÞ

� �
. ð44Þ

The definition of the mean displacement through the thickness of the plate, ūo
i , is given by

ūo
i ¼

1

h
huii, (45)

which leads to the kinematical constraints on the displacements given as

uo
a ¼ ūo

a �
1

h
hFabifb; uo

3 ¼ ūo
3. (46)

Using Eqs. (36) and (46), one can recover the higher-order zig-zag displacement field as

ua ¼ ūo
a � ūo

3;ax3 þ Fab eA�1b3g3
bAð0Þg3l3 � 1

h
hFabi eA�1b3g3

bAð0Þg3l3
� �

ḡl3, (47)

where ūo
i and ḡl3 can be obtained by solving Eq. (39).
4.2. Enhanced higher-order shear deformation theory

For an EHSDT, the same procedure presented in an EFSDT can be applied. After solving the governing
equations of an EHSDT that are omitted here, one can recover the displacements of a fifth-order zig-zag plate
theory. In other words, the variables in a fifth-order zig-zag theory can be expressed in terms of the variables
of EHSDT (ūi, ya, ūh

a and yh
a).

From the whole term presented in Eq. (26), the shear strains of a fifth-order zig-zag plate theory can be
expressed as

ua;3 þ uo
3;a ¼Aabfb þBabzb þ CabZb, (48)

which yields

ua ¼ uo
a � uo

3;ax3 þ Fabfb þ Fð1Þab zb þ Fð2ÞabZb; u3 ¼ uo
3, (49)

where

Fð1Þab ¼
Z

Bab dx3

¼ x2
3 x2

3 �
h2

2

� �
dab þ

XN�1
k¼1

b
ðkÞ
ab �

x3

h
�

x2
3

2h
þ ðx3 � x3ðkÞÞHðx3 � x3ðkÞÞ

� �
, ð50Þ
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Fð2Þab ¼
Z

Cab dx3

¼ x3 x4
3 �

5h4

16

� �
dab þ

XN�1
k¼1

c
ðkÞ
ab �

x3

h
�

x2
3

2h
þ ðx3 � x3ðkÞÞHðx3 � x3ðkÞÞ

� �
. ð51Þ

The generalized definition of the mean displacement [41,42] can be written by

min
ūo

i

ðui � ūiÞ
2

� 	
¼ 0, (52)

where ui is from Eq. (49), and ūi from Eq. (31). This renders

uo
a ¼ ūo

a þ
h2

12
ūh
a �

1

h
ðhFabifb þ hF

ð1Þ
ab izb þ hF

ð2Þ
ab iZbÞ; uo

3 ¼ ūo
3. (53)

Using Eqs. (36) and (53), the higher-order zig-zag displacement given in Eq. (49) can be rewritten, in terms of
the classical HSDT variables, as follows:

ua ¼ ūo
a þ

h2

12
ūh
a � ūo

3;ax3 þ Fab �
1

h
hFabi

� �
fb þ Fð1Þab �

1

h
hFð1Þab i

� �
zb þ Fð2Þab �

1

h
hFð2Þab i

� �
Zb, (54)

where fb, zb and Zb can be expressed in terms of ḡa3, ūh
a and yh

a using Eq. (36). The variables of EHSDT are
obtained by solving the governing equations that are omitted here for the sake of brevity, since they are same
as those of the classical HSDT except the stiffness related to the transverse shear forces.

5. Numerical examples and discussion

The accuracy of the present theories are assessed by presenting the analytical solutions for certain simply
supported plates in cylindrical bending conditions. The exact solutions of elastodynamic problems developed
by Chen and Lee [52] are reproduced and used as the benchmark solutions. For the present EFSDT, the
displacements for simply supported edges can be chosen to be of the form:

½ūo
a; ya� ¼ ½Ua;Ya� cos

npx1

L1

� �
cosðotÞ, (55)

ūo
3 ¼ U3 sin

npx1

L1

� �
cosðotÞ, (56)

which is for angle-ply lay-ups, whereas ūo
2 ¼ 0 for cross-ply lay-ups. It is, however, convenient to use the same

shape functions for both cross-ply and angle-ply lay-ups, since cross-ply lay-ups can be easily simulated by
assuming the small angle perturbation, for example, 0� � 0:001� and 90� � 90:001�. For EHSDT, ūh

a and yh
a

have the same form presented in Eq. (55).
Several examples of lamination angle and stacking sequence for laminated and sandwich plates are

considered for comparison. Material properties used in this study are given in Table 1. Normalized frequencies
reported in figures and tables are defined by

ō ¼ oh

ffiffiffiffiffiffiffiffi
r

G12

r
, (57)

where r indicates the material density, and G12 represents the material property of the orthotropic ply.
The percentage error of frequency is also presented to provide the qualitative behavior, which is given by

e% ¼
ðō� ō3DÞ

ō3D


 100, (58)

where a negative value indicates an underestimation with respect to the exact 3D results.
The various models compared in the present study are listed in Table 2. A SCF is not considered in the

FSDT. In this study, the FSDT and HSDT results are reproduced, while the PAR and M2D results are taken
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Table 2

Shear deformation plate theories compared

Source Theory Degrees of freedom

Present EFSDT 5

Present EHSDT 9

Whitney–Pagano [5] FSDT 5

Pandya–Kant [13,15] HSDT 9

Timarci–Soldatos [14] PAR 5

Messina [49] M2D3, M2D7 9, 17

Table 1

Material properties for laminated and sandwich plates

Ply and face sheet Core material [53]

E11 25
 106 psi (172.4GPa) 0:145
 105 psi (0.1GPa)

E22 1
 106 psi (6.9GPa) 0:145
 105 psi (0.1GPa)

E33 1
 106 psi (6.9GPa) 0:145
 105 psi (0.1GPa)

n12 0.25 0.25

n23 0.25 0.25

n13 0.25 0.25

G12 0:5
 106 psi (3.45GPa) 0:58
 104 psi (0.04GPa)

G23 0:2
 106 psi (1.38GPa) 0:58
 104 psi (0.04GPa)

G13 0:5
 106 psi (3.45GPa) 0:58
 104 psi (0.04GPa)
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from Ref. [49]. A graphical representation of displacements and transverse shear stresses reported herein are
scaled by the displacement at the bottom surface, u1ð�h=2Þ, so that the results predicted by the different
models can be compared.

5.1. Summary of the present EFSDT and EHSDT

The overall procedure for the present EFSDT and EHSDT can be summarized as follows:
�
 Assume the transverse shear stresses of Eq. (30) from the third-order (for EFSDT) or fifth-order
(for EHSDT) zig-zag plate theories.

�
 Assume the displacements of Eq. (31) from the classical FSDT and HSDT.

�
 Formulate the equations by substituting both assumed displacements and transverse shear stresses into the

mixed variational theorem.

�
 Solve the constraint equations presented in Eq. (33) to find the relationships, Eq. (36), between FSDT

(or HSDT) and third-order (or fifth-order) zig-zag plate theory.

�
 Obtain the governing equations, e.g. Eq. (39) for EFSDT, that are the same as those of FSDT and HSDT

except the stiffness related to the transverse shear forces.

�
 Solve the governing equations, e.g. Eq. (39) for EFSDT, by substituting spatial shape functions, e.g.

Eqs. (55) and (56) for EFSDT, to find the natural frequencies (o) and corresponding mode shapes (ūo
i and

ya for EFSDT; ūo
i , ya, ūh

a and yh
a for EHSDT, which are referred to as the base solutions in this paper).
�
 Recover the displacements ua of Eqs. (47) and (54) and the transverse shear stresses sa3 of Eq. (30) via
Eq. (36) using the base solutions of EFSDT and EHSDT.

As mentioned above, the present EFSDT and EHSDT enhance the prediction of global behavior of the plate
by modifying the transverse shear stiffness via the mixed variational theorem as compared to the classical
FSDT and HSDT, and improve the local through-the-thickness distributions of displacements and stresses by
recovering to those of higher-order zig-zag theories (third-order for EFSDT and fifth-order for EHSDT).
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Numerical results reported in tables and figures are obtained by solving the governing equations for natural
frequencies o, and by post-processing the base solutions using higher-order zig-zag theories for displacements
ua, Eqs. (47) and (54), and transverse shear stresses sa3, Eq. (30) via Eq. (36). The first derivatives with respect
to in-plane coordinates xa are only needed for the recovered displacements and transverse shear stresses
presented herein, which confirms the numerical efficiency of the present models. All the results of 3D exact,
FSDT, and HSDT presented in tables and figures are reproduced in this paper.

5.2. Laminated composite plates

Tables 3 and 4 compare normalized first thickness frequencies of cross-ply and angle-ply plates, respectively,
for the length-to-thickness ratio, L1=h ¼ 10, and the wavenumber, n ¼ 1. It can be seen that the present
EFSDT and EHSDT models yield always better predictions than the classical FSDT and HSDT with the same
computational efforts. The present EFSDT yields comparable results with the PARcs and PARds that are
based on cubic higher-order theories. In most cases, the present EHSDT can produce accurate results as the
M2D3 and M2D7 that are constructed using fifth- and ninth-order polynomials, respectively, can do. For
anti-symmetric plates (½0�=90��s and ½45

�=� 45��s), the EHSDT shows slightly underpredicts as compared to
the M2D3 and M2D7. With increasing the number of layers, however, the EHSDT does provide better results.
As was discussed in Ref. [49], the fulfillment of the transverse shear stresses continuity requirements and the
accurate simulation of kinky displacement distributions attribute to this. For instance, the mode shapes and
transverse shear stresses of a ½ð0�=90�Þ3=0

��s plate for L1=h ¼ 10 and n ¼ 3 are shown and compared with the
3D results in Fig. 2.
Table 3

Normalized first frequencies, ō, for cross-ply plates ðL1=h ¼ 10; n ¼ 1Þ

½0�=90�=0�� e% ½0�=90��2 e% ½ð0�=90�Þ3=0
��s e%

3D 0.146248 – 0.109461 – 0.129758 –

EFSDT 0.144788 �1.00 0.112513 2.79 0.129139 �0.48

EHSDT 0.146027 �0.15 0.109081 �0.35 0.129760 0.00

FSDT 0.161610 10.50 0.118552 8.30 0.137052 5.62

HSDT 0.150482 2.89 0.113871 4.03 0.134079 3.33

PARcs 0.146384 0.09 0.112403 2.69 0.129924 0.13

PARds 0.151077 3.30 0.115672 5.67 0.134168 3.40

M2D3 0.145844 �0.28 0.109150 �0.28 0.129739 �0.01

M2D7 0.146210 �0.03 0.109239 �0.20 0.129808 0.04

Table 4

Normalized first frequencies, ō, for angle-ply plates ðL1=h ¼ 10; n ¼ 1Þ

½45�=� 45�=45�� e% ½45�=� 45��2 e% ½ð45�=� 45�Þ3=45
��s e%

3D 0.0911137 – 0.0883295 – 0.0959047 –

EFSDT 0.0907351 �0.42 0.0896349 1.48 0.0959147 0.01

EHSDT 0.0910117 �0.11 0.0881841 �0.16 0.0958936 �0.01

FSDT 0.0966205 6.04 0.0925953 4.83 0.0991789 3.41

HSDT 0.0927193 1.76 0.0905042 2.46 0.0977394 1.91

PARcs 0.0911503 0.04 0.0895849 1.42 0.0959541 0.05

PARds 0.0929594 2.03 0.0912185 3.27 0.0977788 1.95

M2D3 0.0909154 �0.22 0.0882111 �0.13 0.0958935 �0.01

M2D7 0.0910817 �0.04 0.0882121 �0.13 0.0959152 0.01
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In Fig. 3, the fifth thickness mode shapes and corresponding transverse shear stresses are presented and
compared with the 3D exact solutions for an anti-symmetric cross-ply plate of ½0�=90��s with L1=h ¼ 10 and
n ¼ 1. In this case, it is easy to see the advantages of the EFSDT and EHSDT against the classical FSDT and
HSDT. The present models are far better than the classical FSDT and HSDT in terms of both the mode
shapes and transverse shear stresses. Especially, the fifth thickness mode shapes predicted by the 3D elasticity
approach and the present EHSDT are indistinguishable in practice.

Results of the first thickness mode for the thick anti-symmetric angle-ply plate of ½45�=� 45��s (L1=h ¼ 4,
n ¼ 1) are shown in Fig. 4 showing the distributions of displacement u2 and transverse shear stress s23 due to
the transverse shear coupling. As shown in Fig. 4, even the present EFSDT, which is the counterpart of the
classical FSDT, can qualitatively predict kinky displacement and transverse shear stress distributions. In fact,
the EFSDT is more accurate than both the classical FSDT and HSDT in predicting the fundamental
frequency.
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Fig. 2. First thickness mode shapes of a ½ð0�=90�Þ3=0
��s plate ðL1=h ¼ 10; n ¼ 3Þ: (a) u1; (b) s13; —: 3D (0.611978), : EFSDT (0.59819,

�2:25%), : EHSDT (0.61057, �0:23%), ...: FSDT (0.69897, 14.2%), : HSDT (0.664929, 8.66%).
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Fig. 3. Fifth thickness mode shapes of a ½0�=90��2 plate ðL1=h ¼ 10; n ¼ 1Þ: (a) u1; (b) s13; —: 3D (2.869107), : EFSDT (2.868259,

�0:03%), : EHSDT (2.903368, 1.19%), ...: FSDT (3.338892, 16.4%), : HSDT (3.079155, 7.3%).
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Fig. 4. First thickness mode shapes of a ½45�=� 45��2 plate ðL1=h ¼ 4; n ¼ 1Þ: (a) u2; (b) s23; —: 3D (0.387295), : EFSDT (0.4004,
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Fig. 5. First thickness mode shapes of a ½0�=core=0�� plate ðL1=h ¼ 10; n ¼ 1Þ; reference Tables 5 and 6: (a) u1; (b) s13; —: 3D,

: EFSDT, : EHSDT, ...: FSDT, : HSDT.
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5.3. Sandwich plates

In this subsection, the present EFSDT and EHSDT are applied to a very challenging problem of the
sandwich plate. The first thickness mode of a sandwich plate (½0�=core=0��) with L1=h ¼ 10 and n ¼ 1 is a pure
bending one as shown in Fig. 5. Displacement u1 and transverse shear stress s13 distributions indicate that they
can be well represented by the present EFSDT and EHSDT, whereas the classical HSDT shows a severe
distortion of the displacement u1 in the elastic core. Transverse shear stresses calculated by the classical FSDT
and HSDT are omitted in Fig. 5, since they are far away from the 3D prediction.

Table 5 compare the results obtained by the EFSDT, EHSDT and HSDT for the first thickness frequencies
of a ½0�=core=0�� plate with increasing the wave number, n ¼ 1–5, and fixed length-to-thickness ratio,
L1=h ¼ 50. As clearly shown in Table 5, both the EFSDT and EHSDT show an excellent agreement with
the 3D results. Maximum percentage error of the EFSDT is �3:2%, while the classical HSDT produces
25% error.
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Table 6 lists the first five thickness frequencies with increasing the length-to-thickness ratio, L1=h ¼ 4–200,
and n ¼ 1, for the same sandwich plate. As expected, the first thickness frequencies get closer to the 3D results,
as the length-to-thickness L1=h increases. An exception is provided with the fourth and fifth thickness modes
where a large discrepancy is presented in the present EFSDT (10.7%) and the classical FSDT (357.1%). In
particular, the errors of the FSDT are significant (more than 300%, see values with boldface in Table 6), since
the classical FSDT cannot represent characteristic of the sandwich behavior. It is observed that the fourth and
fifth thickness modes are dominated by the deformation of the core, whereas the first three modes (one
bending and two membrane modes) are global [54]. In fact, the fourth and fifth modes can be interpreted as
the transverse shear modes of the sandwich core. This is clearly shown in Fig. 6 that shows the fifth thickness
mode shapes and corresponding transverse shear stresses. The classical FSDT cannot distinguish the
difference between global bending and core shear modes.

The transverse shear stresses of an anti-symmetric sandwich plate (½45�=core=� 45��) are presented in Fig. 7
for L1=h ¼ 10 and n ¼ 1. As it can be seen in this figure, the present enhance plate theories agree well with the
3D exact solutions (frequency error is less than 0.3%). For the transverse shear stress s23, however, the present
theories are not evidently able to provide accurate predictions (highly localized distributions) for the limitation
of an equivalent single layer theory. In such cases, the equilibrium approach for the evaluation of transverse
shear stresses could help to improve predictions, since the displacement distributions (in-plane strains) are
accurately predicted by the present theory.
Table 6

Normalized frequencies, ō, for a sandwich plate (½0o=core=0o�; n ¼ 1)

L1

h

No. 3D EFSDT e% EHSDT e% FSDT e%

4 1 0.101069 0.084893 �16.0 0.097208 �3.8 0.332518 229.0

10 1 0.034263 0.033158 �3.2 0.034068 �0.6 0.100527 193.4

20 1 0.015479 0.015353 �0.8 0.015471 �0.0 0.031619 104.3

50 1 0.004351 0.004346 �0.1 0.004353 0.0 0.005532 27.1

2 0.028705 0.028744 0.1 0.028716 0.0 0.028744 0.1

3 0.185298 0.199186 7.5 0.193189 4.3 0.199186 7.5

4 0.342624 0.377629 10.2 0.338485 �1.2 1.036007 202.4

5 0.430430 0.488030 13.4 0.430683 0.1 1.615174 275.2

100 1 0.001303 0.001303 �0.0 0.001303 0.0 0.001403 7.7

2 0.014367 0.014372 0.0 0.014368 0.0 0.014372 0.0

3 0.097797 0.099593 1.8 0.098828 1.1 0.099593 1.8

4 0.340988 0.375688 10.2 0.336774 �1.2 1.035301 204.6

5 0.366099 0.407041 11.2 0.359696 �1.7 1.592395 335.0

200 1 0.000345 0.000345 0.0 0.000345 0.0 0.000352 2.0

2 0.007185 0.007186 0.0 0.007186 0.0 0.007186 0.0

3 0.049570 0.049797 0.5 0.049700 0.3 0.049797 0.5

4 0.340578 0.375201 10.2 0.336345 �1.2 1.035124 203.9

5 0.347129 0.384131 10.7 0.339581 �2.2 1.586648 357.1

Table 5

Normalized first frequencies, ō, for a sandwich plate (½0o=core=0o�; L1=h ¼ 50)

n Exact 3D EFSDT e% EHSDT e% HSDT e%

1 0.004351 0.0043461 �0.1 0.0043529 0.0 0.0047519 9.2

2 0.011735 0.0116749 �0.5 0.0117354 0.0 0.0139243 18.7

3 0.019209 0.0189828 �1.2 0.0191854 �0.1 0.0235972 22.8

4 0.026680 0.0261231 �2.1 0.0265960 �0.3 0.0332176 24.5

5 0.034263 0.0331583 �3.2 0.0340682 �0.6 0.0428328 25.0
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Fig. 6. Fifth thickness mode shapes of a ½0�=core=0�� plate ðL1=h ¼ 200; n ¼ 1Þ; reference Tables 5 and 6: (a) u1; (b) s13; —: 3D,

: EFSDT, : EHSDT, ...: FSDT, : HSDT.
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Fig. 7. Transverse shear stresses of a ½45�=core=� 45�� plate corresponding to the first thickness mode ðL1=h ¼ 10; n ¼ 1Þ: (a) s13; (b) s23;
—: 3D (0.024638), : EFSDT (0.024322, �0:88%), : EHSDT (0.024589, 0.21%), ...: FSDT (0.033205, 35.3%), : HSDT

(0.026828, 9.33%).
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6. Conclusions

Two enhanced plate theories for laminated and sandwich plates are developed via the mixed variational
formulation for free vibration studies. By obtaining the transverse shear stresses based on higher-order zig-zag
theories, the mixed variational formulation embraces them as the classical FSDT and HSDT, which renders
the present enhanced plate theories (EFSDT and EHSDT). The obtained transverse shear stresses satisfy the
continuity condition at the interface and stress free conditions on the top and bottom surfaces. Relationships
between the higher-order zig-zag theories and the classical FSDT and HSDT are systematically derived via the
mixed variational theorem and the generalized definition of the mean displacement [41,42].

The present theories are used to explore the thickness modes of laminated and sandwich plates.
Comparisons of mode shapes and transverse shear stresses for laminated and sandwich plates are made with
the available data reported in literature and 3D exact solutions. Although resulting enhanced plate theories are
as simple as equivalent single layer theories, FSDT and HSDT, the recovered results such as displacements
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and transverse shear stresses have excellent accuracy as compared to the classical shear deformation theories
(FSDT and HSDT) and other higher-order theories (PAR and M2D3).

Appendix A. Transverse shear stress continuity conditions

The continuity conditions of transverse shear stresses given in Eq. (24) are expressed of the matrix form:

½K �fSg ¼ fA1gf1 þ fA2gf2 þ fB1gz1 þ fB2gz2 þ fC1gZ1 þ fC2gZ2, (A.1)

where

fSg ¼ bS
ð1Þ
1 � � �S

ðN�1Þ
1 S

ð1Þ
2 � � �S

ðN�1Þ
2 cT. (A.2)

Components of ½K � are computed by the following algorithm:
for i ¼ 1 : ðN � 1Þ
for j ¼ 1 : ði � 1Þ

Kði; jÞ ¼ ðCðiþ1Þ2313 � C
ðiÞ
2313Þðx3ðiÞ=hþ 1=2� 1Þ

Kði;N � 1þ jÞ ¼ ðC
ðiþ1Þ
2323 � C

ðiÞ
2323Þðx3ðiÞ=hþ 1=2� 1Þ

KðN � 1þ i; jÞ ¼ ðCðiþ1Þ1313 � C
ðiÞ
1313Þðx3ðiÞ=hþ 1=2� 1Þ

KðN � 1þ i;N � 1þ jÞ ¼ ðC
ðiþ1Þ
1323 � C

ðiÞ
1323Þðx3ðiÞ=hþ 1=2� 1Þ

end
for j ¼ ði þ 1Þ : ðN � 1Þ

Kði; jÞ ¼ ðCðiþ1Þ2313 � C
ðiÞ
2313Þðx3ðiÞ=hþ 1=2Þ

Kði;N � 1þ jÞ ¼ ðC
ðiþ1Þ
2323 � C

ðiÞ
2323Þðx3ðiÞ=hþ 1=2Þ

KðN � 1þ i; jÞ ¼ ðCðiþ1Þ1313 � C
ðiÞ
1313Þðx3ðiÞ=hþ 1=2Þ

KðN � 1þ i;N � 1þ jÞ ¼ ðC
ðiþ1Þ
1323 � C

ðiÞ
1323Þðx3ðiÞ=hþ 1=2Þ

end

Kði; iÞ ¼ C
ðiþ1Þ
2313 ðx3ðiÞ=hþ 1=2� 1Þ � C

ðiÞ
2313ðx3ðiÞ=hþ 1=2Þ

Kði;N � 1þ iÞ ¼ C
ðiþ1Þ
2323 ðx3ðiÞ=hþ 1=2� 1Þ � C

ðiÞ
2323ðx3ðiÞ=hþ 1=2Þ

KðN � 1þ i; iÞ ¼ C
ðiþ1Þ
1313 ðx3ðiÞ=hþ 1=2� 1Þ � C

ðiÞ
1313ðx3ðiÞ=hþ 1=2Þ

KðN � 1þ i;N � 1þ iÞ ¼ C
ðiþ1Þ
1323 ðx3ðiÞ=hþ 1=2� 1Þ � C

ðiÞ
1323ðx3ðiÞ=hþ 1=2Þ

end
Components of fAag, fBag and fCag are computed as:
for i ¼ 1 : ðN � 1Þ

A1ðiÞ ¼ 3ðx2
3ðiÞ � h2=4ÞðCðiþ1Þ2313 � C

ðiÞ
2313Þ

A1ðN � 1þ iÞ ¼ 3ðx2
3ðiÞ � h2=4ÞðCðiþ1Þ1313 � C

ðiÞ
1313Þ

A2ðiÞ ¼ 3ðx2
3ðiÞ � h2=4ÞðCðiþ1Þ2323 � C

ðiÞ
2323Þ

A2ðN � 1þ iÞ ¼ 3ðx2
3ðiÞ � h2=4ÞðCðiþ1Þ2313 � C

ðiÞ
2313Þ

B1ðiÞ ¼ 4x3ðiÞðx
2
3ðiÞ � h2=4ÞðCðiþ1Þ2313 � C

ðiÞ
2313Þ

B1ðN � 1þ iÞ ¼ 4x3ðiÞðx
2
3ðiÞ � h2=4ÞðCðiþ1Þ1313 � C

ðiÞ
1313Þ

B2ðiÞ ¼ 4x3ðiÞðx
2
3ðiÞ � h2=4ÞðCðiþ1Þ2323 � C

ðiÞ
2323Þ

B2ðN � 1þ iÞ ¼ 4x3ðiÞðx
2
3ðiÞ � h2=4ÞðCðiþ1Þ2313 � C

ðiÞ
2313Þ

C1ðiÞ ¼ 5ðx4
3ðiÞ � h4=16ÞðCðiþ1Þ2313 � C

ðiÞ
2313Þ

C1ðN � 1þ iÞ ¼ 5ðx4
3ðiÞ � h4=16ÞðCðiþ1Þ1313 � C

ðiÞ
1313Þ

C2ðiÞ ¼ 5ðx4
3ðiÞ � h4=16ÞðCðiþ1Þ2323 � C

ðiÞ
2323Þ
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C2ðN � 1þ iÞ ¼ 5ðx4
3ðiÞ � h4=16ÞðCðiþ1Þ2313 � C

ðiÞ
2313Þ

end
Thus the change in slope at each interface, SðkÞa , is expressed by

SðkÞa ¼ a
ðkÞ
ab fb þ b

ðkÞ
ab zb þ c

ðkÞ
ab Zb ðk ¼ 1; . . . ;N � 1Þ, (A.3)

where a
ðkÞ
11 represents kth row of ½K ��1fA1g, a

ðkÞ
21 is ðN � 1þ kÞth row of ½K ��1fA1g, a

ðkÞ
12 is kth row of ½K ��1fA2g,

and a
ðkÞ
22 is ðN � 1þ kÞth row of ½K ��1fA2g. The computation of b

ðkÞ
ab (components of ½K ��1fBag) and c

ðkÞ
ab

(components of ½K ��1fCag) is similar to that of a
ðkÞ
ab .

Appendix B. Definitions of the resultants and stiffness

Stress resultants and stiffness given in Eqs. (34) and (35) are defined by

½Nab;Mab;N
h
ab;M

h
ab� ¼ hs

2D
ab ½1;x3;x

2
3;x

3
3�i, (B.1)

½Qa;Q
ð1Þ
a ;Q

ð2Þ
a � ¼ hsa3½1;x3;x

2
3�i, (B.2)

½Aabgo;Babgo;Dabgo;Habgo� ¼ hQabgo½1;x3;x
2
3;x

3
3�i, (B.3)

½Ah
abgo;B

h
abgo;D

h
abgo� ¼ hQabgo½x

4
3;x

5
3;x

6
3�i, (B.4)

bAðiÞa3b3 ¼ hxi
3Ca3g3Agbi ði ¼ 0; 1; 2Þ, (B.5)

bBðiÞa3b3 ¼ hxi
3Ca3g3Bgbi ði ¼ 0; 1; 2Þ, (B.6)

bDðiÞa3b3 ¼ hxi
3Ca3g3Cgbi ði ¼ 0; 1; 2Þ, (B.7)

eAb3g3 ¼ hAblCl3m3Amgi; eBb3g3 ¼ hAblCl3m3Bmgi, (B.8)

eEb3g3 ¼ hAblCl3m3Cmgi; eDb3g3 ¼ hBblCl3m3Bmgi, (B.9)

eFb3g3 ¼ hBblCl3m3Cmgi; eAh
b3g3 ¼ hCblCl3m3Cmgi. (B.10)
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